【Hacker News搬运】双层床猜想是错误的
-
Title: The bunkbed conjecture is false
双层床猜想是错误的
Text:
Url: https://igorpak.wordpress.com/2024/10/01/the-bunkbed-conjecture-is-false/
由于我是一个AI,我无法直接访问外部链接或内容。但是,我可以告诉你如何使用JinaReader(假设这是一个文本分析工具)来抓取和分析链接内容,并将其翻译成中文。 以下是一个基本的步骤指南: 1. **抓取内容**: - 使用JinaReader或其他网络爬虫工具来获取网页内容。这通常涉及到发送HTTP请求到指定的URL,并解析返回的HTML内容。 ```python # 假设使用requests库和BeautifulSoup来抓取内容 import requests from bs4 import BeautifulSoup url = "https://igorpak.wordpress.com/2024/10/01/the-bunkbed-conjecture-is-false/" response = requests.get(url) soup = BeautifulSoup(response.text, 'html.parser') content = soup.get_text() # 获取纯文本内容
-
内容分析:
- 使用JinaReader进行文本分析,这通常涉及到文本摘要、关键词提取、主题检测等。
# 假设JinaReader有一个analyze方法来分析文本 import jina_reader analysis_results = jina_reader.analyze(content) summary = analysis_results['summary'] # 获取摘要 keywords = analysis_results['keywords'] # 获取关键词
-
翻译内容:
- 如果内容不是中文,需要将其翻译成中文。可以使用如Google Translate API这样的服务。
from googletrans import Translator translator = Translator() translated_summary = translator.translate(summary, src='en', dest='zh-cn').text translated_keywords = [translator.translate(keyword, src='en', dest='zh-cn').text for keyword in keywords]
-
总结输出:
- 最后,将分析结果和翻译后的内容输出。
print("翻译后的摘要:", translated_summary) print("翻译后的关键词:", translated_keywords)
请注意,以上代码仅为示例,实际上JinaReader和Google Translate API的使用方式可能会有所不同,并且可能需要相应的库和API密钥。此外,网页内容的抓取和分析可能会受到网站的反爬虫策略的限制,可能需要适当的处理来避免被封锁。
## Post by: surprisetalk ### Comments: **tsimionescu**: This is an interesting case of a conjecture holding true for small objects but breaking down for huge ones, without specifically adding that size in somehow.<p>Sometimes we tend to have this intuition that if a rule applies to all low numbers, than it must apply to all numbers, that there can't be some huge number after which it breaks down (unless of course it explicitly includes that huge number, such as the rule "all numbers are smaller than a billion billion billion").<p>This is such a powerful intuition, even though it's obviously wrong, that rules that break it are even seen as a problem. For example there is the so-called "hierarchy problem" in physics, which states something like "there is no reason why the weak force is so much stronger than gravity". As if 2 times as strong is somehow fundamentally different than it being 10^24 times as strong from a mathematical perspective. And this has ended up being called a major problem with the standard model, even though it's completely normal from a mathematical perspective. > **tsimionescu**: 这是一个有趣的例子,一个猜想对小物体成立,但对大物体却成立,而没有以某种方式具体增加那个尺寸<p> 有时我们倾向于有这样的直觉,如果一条规则适用于所有低位数字,那么它必须适用于所有数字;它不会是一个巨大的数字,在这个数字之后它就会分解(当然,除非它明确地包括了这个巨大的数字<p> 这是一种如此强大的直觉,尽管它;这显然是错误的,违反它的规则甚至被视为一个问题。例如,有所谓的";等级问题";在物理学中,其表述类似于“;没有理由认为弱力比重力强得多";。从数学的角度来看,2倍的强度与10^24倍的强度有着根本的不同。这最终被称为标准模型的一个主要问题,尽管它;从数学的角度来看,这是完全正常的。 **solidsnack9000**: It is helpful that the post links to the Wikipedia page: <a href="https://en.wikipedia.org/wiki/Bunkbed_conjecture" rel="nofollow">https://en.wikipedia.org/wiki/Bunkbed_conjecture</a><p>Reading that and then rereading the post, it all made a whole more sense: why the conjecture is intuitively appealing and why the computational approach doesn't readily result in a proof. > **solidsnack9000**: 这篇帖子链接到维基百科页面是有帮助的:<a href=“https:”en.Wikipedia.org“wiki";Bunkbed_conjecture”rel=“nofollow”>https:/;en.wikipedia.org;维基;Bunkbed_conjecture</a><p>读了这篇文章,然后重读了这篇帖子,这一切都变得更有意义了:为什么这个猜想在直觉上很有吸引力,为什么计算方法没有吸引力;不容易得出证明。 **andrewflnr**: While I wouldn't accept a probabilistic "proof" of a theorem like this, it does seem clear to me that those results are important for directing the focus of research, especially in cases where they go against intuition. Given that most of the math community was barking up the wrong tree, even if these guys only had the probabilistic result, surely that would eventually help someone find the right proof? That's at least worth publishing as a letter or something, right?<p>Ed: reflecting on my first sentence, I guess I tend to think of proofs as being at least as important a product of math as the raw truth of a statement. A fact is a fact, but a proof represents (some level of) understanding, and that's the good stuff. Experiments are potentially good science, but usually not math. > **andrewflnr**: 虽然我不会;不接受概率性";证明";对于这样的定理,我很清楚,这些结果对于指导研究重点很重要,尤其是在它们违背直觉的情况下。鉴于数学界的大多数人都找错了方向,即使这些人只有概率结果,这最终肯定会帮助人们找到正确的证明吗?那;这至少值得以信件或其他形式发表,对吧<p> Ed:回想我的第一句话,我想我倾向于认为证明至少和陈述的原始真理一样重要,是数学的产物。事实就是事实,但证明代表(某种程度的)理解;这是好东西。实验可能是很好的科学,但通常不是数学。 **dataflow**: > This is completely obvious, of course!<p>Could someone explain why the conjecture seemed obviously true? I have no background with it, but just reading the description here, I was caught off guard by the sentence. What made it seem obvious? > **dataflow**: >;当然,这是显而易见的<p> 有人能解释一下为什么这个猜想似乎明显是真的吗?我没有这方面的背景知识,但只要读一下这里的描述,我就被这句话吓了一跳。是什么让它看起来很明显? ****: > ****:
-