【Hacker News搬运】摇摆表定理(2022)
-
Title: The Wobbly Table Theorem (2022)
摇摆表定理(2022)
Text:
Url: https://people.math.harvard.edu/~knill/teaching/math1a_2011/exhibits/wobblytable/
很抱歉,作为一个文本和信息处理的AI,我无法直接访问或处理外部链接。但是,我可以提供一些关于如何使用JinaReader(假设这是一个工具或库,用于抓取和分析内容)的一般步骤。 以下是一个假设性的示例,说明如何使用JinaReader抓取内容、分析内容以及如果内容不是中文,如何将其翻译成中文: 1. **抓取内容**: - 使用JinaReader的API或库函数,发送HTTP请求到指定的URL。 - 获取网页的HTML内容。 ```python from jina_reader import JinaReader reader = JinaReader() url = "https://people.math.harvard.edu/~knill/teaching/math1a_2011/exhibits/wobblytable/" content = reader.fetch(url)
- 分析内容:
- 对抓取到的HTML内容进行分析,提取文本、标题、图片等信息。
- 可以使用正则表达式、BeautifulSoup或其他HTML解析库。
from bs4 import BeautifulSoup soup = BeautifulSoup(content, 'html.parser') text = soup.get_text()
- 翻译非中文内容:
- 如果分析结果显示内容包含非中文,可以使用翻译API进行翻译。
- 假设有一个翻译函数
translate_to_chinese
,它可以接收文本并返回翻译后的中文文本。
def translate_to_chinese(text): # 这里假设有一个翻译API,你需要替换成实际的API调用 translated_text = "翻译后的文本" # 这里只是一个占位符 return translated_text # 假设文本是英文的 if not all('\u4e00' <= char <= '\u9fff' for char in text): text = translate_to_chinese(text)
- 总结内容:
- 对翻译后的文本进行总结,提取关键信息。
def summarize_text(text): # 这里实现文本总结的逻辑 summary = "总结后的文本" # 这里只是一个占位符 return summary summary = summarize_text(text) print(summary)
请注意,上述代码是假设性的,
jina_reader
、translate_to_chinese
和summarize_text
函数都是虚构的。在实际应用中,你需要根据JinaReader的具体实现和可用的翻译API来编写相应的代码。## Post by: mpweiher ### Comments: **alanbernstein**: I always had trouble envisioning this. I think part of the reason is the "angle x", which, according to the explanation and video on this page, is vector-valued, not scalar. IVT applies to scalar functions, is there an equivalent for a function with a vector domain?<p>The table does not rotate around its own axis, but rather it rotates in "such a way that three legs stay on the surface", i.e. moves around in 3d with a surface-contact constraint, which seems like a motion with more than one degree of freedom to me. Is such a rotation always possible? Is the motion somehow effectively 1D?<p>These questions don't seem to have "obvious" answers to me, and they're only addressed as "assumptions" on this page. > **alanbernstein**: 我总是很难想象这一点。我认为部分原因是";角度x”;,根据本页的解释和视频,它是矢量值的,而不是标量。IVT适用于标量函数,对于具有向量域的函数,有等价物吗<p> 桌子不绕自己的轴线旋转,而是以";使得三条腿保持在表面上”;,也就是说,在具有表面接触约束的3d中移动,对我来说,这似乎是一个具有多个自由度的运动。这种旋转总是可能的吗?这个动议在某种程度上有效地是1D吗<p> 这些问题不会;似乎没有";明显";回答我,他们;仅被称为";假设";在这个页面上。 **matheist**: The linked proof doesn't work when the floor is too steep.<p>I wrote about it here: <a href="https://haggainuchi.com/wobblytable.html" rel="nofollow">https://haggainuchi.com/wobblytable.html</a><p>My preferred proof goes through a theorem of Dyson that any continuous real valued function on the sphere attains equal values on some square on a great circle. > **matheist**: 链接的证明不;地板太陡的时候我不工作<p> 我在这里写过这件事:<a href=“https:/;haggainuchi.com/&#摇摇晃晃的.html”rel=“nofollow”>https:/;haggainuchi.com;html</a><p>我最喜欢的证明是通过戴森的一个定理,即球面上的任何连续实值函数在大圆上的某个正方形上都能得到相等的值。 **cperciva**: Note: This is really the wobbly <i>floor</i> theorem. It applies to any continuous floor but only to a subset of tables. (Even "square tables which are perfectly level" isn't sufficient unless you allow the tabletop to intersect the floor.) > **cperciva**: 注意:这实际上是摇摇晃晃的<i>floor</i>定理。它适用于任何连续的楼层,但仅适用于表的子集。(即使是“完全水平的方桌”也是不够的,除非你允许桌面与地板相交。) **Willingham**: Interesting choice of music for Harvard! > **Willingham**: 哈佛的音乐选择很有趣! **pontifier**: The biggest problem with this is that it doesn't work every time in real life. Sometimes you just have a table with one short leg. > **pontifier**: 最大的问题是它没有;在现实生活中,我不会每次都工作。有时你只有一张短腿的桌子。
- 分析内容: