【Hacker News搬运】研究不足的蛋白质团对细胞生化具有全局影响
-
Title: Understudied protein blobs have global effects on cell biochemistry
研究不足的蛋白质团对细胞生化具有全局影响
Text:
Url: https://phys.org/news/2024-09-understudied-protein-blobs-global-effects.html
很抱歉,我无法直接访问或分析外部链接的内容,包括您提供的链接。不过,我可以根据您提供的标题和描述来模拟一个可能的总结。 标题:“一项被低估的蛋白质团块对全球影响的研究” 假设文章内容如下: 文章讨论了一种在生物体内常见但之前研究较少的蛋白质团块,称为“蛋白质纳米颗粒”(Protein Nanoparticles, PNP)。研究人员通过一系列实验发现,这些PNP在生物体内具有广泛的影响,包括细胞信号传导、免疫反应和基因表达调控。 总结: 这项研究揭示了蛋白质纳米颗粒(PNP)对生物体的全球性影响。PNP作为一种在生物体内广泛存在的蛋白质团块,以前并未受到足够的重视。研究发现,PNP在细胞层面上扮演着关键角色,它们不仅参与细胞信号传导,还与免疫系统的调节和基因表达的调控密切相关。这一发现可能对理解多种生物学过程具有重要意义,并可能为未来的疾病治疗和生物技术发展提供新的方向。通过深入研究和开发针对PNP的药物或治疗方法,科学家们有望在治疗某些疾病方面取得突破。 请注意,以上总结是基于标题和假设的内容编写的,实际文章的内容可能会有所不同。
Post by: PaulHoule
Comments:
w10-1: Paper title: Biomolecular condensates regulate cellular electrochemical equilibria<p>Summary of abstract: protein aggregates form electronegative buffer, with corresponding field extending to cell wall. Tested in e-coli: induced aggregates gave cell walls a negative charge, which reduced affinity to negatively-charged antibiotics.<p>No access to the article itself, but it's a long way from that to regulation or equilibria of any sort, so I'd be interested in reading it.
w10-1: 论文标题:生物分子冷凝物调节细胞电化学平衡<p>摘要摘要:蛋白质聚集体形成电负性缓冲液,相应的场延伸到细胞壁。在大肠杆菌中测试:诱导的聚集体使细胞壁带负电荷,从而降低了对带负电荷抗生素的亲和力<p> 无法访问文章本身,但它;从那到任何形式的监管或平衡还有很长的路要走,所以我;我有兴趣读它。
bbor: <p><pre><code> The results show that they may be a previously missing mechanism by which cells modulate their internal electrochemistry... "Our research shows that condensates influence cells well beyond direct physical contact, almost like they have a wireless connection to how cells interact with the environment,"
</code></pre>
Wow. It looks like they're plentiful in the brain, too: <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10102667/" rel="nofollow">https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10102667/</a> This seems like a mechanism <i>far</i> more likely to be impactful than Penrose and Hammerhoff's quantum tomfoolery, but something tells me it'll get way less attention and take at least 2-5 years to get solid info on either way. Still exciting for all us brain fans out there! Who cares about saving people by enhancing antibiotics, if it regulates electrical potential then let's talk <i>mind</i>. Could these be the bits of a neuronal bite?bbor: <p>结果表明,它们可能是细胞调节其内部电化学的一种以前缺失的机制&“;我们的研究表明,冷凝物对细胞的影响远远超出了直接的物理接触,几乎就像它们与细胞如何与环境相互作用有无线连接一样;</code></pre>哇!看起来他们;它们在大脑中也很丰富:<a href=“https:”www.ncbi.nlm.nih.gov“PMC10102667”rel=“nofollow”>https:”/;www.ncbi.nlm.nih.gov;pmc;文章#x2F;PMC10102667</a> 这似乎是一种比Penrose和Hammerhoff更有可能产生影响的机制;量子愚蠢,但告诉我它;无论哪种方式,我都会得到更少的关注,至少需要2-5年的时间才能获得可靠的信息。对于我们所有的脑迷来说,这仍然令人兴奋!谁在乎通过增强抗生素来拯救人们,如果它能调节电势,那么就让;我们谈论心灵。这些可能是神经元咬伤的碎片吗?
andrewflnr: Dang, I thought maybe someone had figured out what the vault organelle[0] is for. Not too disappointed though, this still sounds crazy.<p>That said, did anyone else have a really hard time parsing this article?<p>[0] <a href="https://en.wikipedia.org/wiki/Vault_(organelle)" rel="nofollow">https://en.wikipedia.org/wiki/Vault_(organelle)</a>
andrewflnr: 哎呀,我想也许有人已经弄清楚了拱顶细胞器[0]的用途。虽然不太失望,但这听起来仍然很疯狂<p> 也就是说,其他人在解析这篇文章时真的很困难吗<p> [0]<a href=“https://en.wikipedia.org:wiki:Vault_(细胞器)”rel=“nofollow”>https:///;en.wikipedia.org;维基;Vault_(细胞器)</a>