【Hacker News搬运】即将到来的技术奇点(1993)
-
Title: The Coming Technological Singularity (1993)
即将到来的技术奇点(1993)
Text:
Url: https://mindstalk.net/vinge/vinge-sing.html
很抱歉,但我无法直接访问或处理外部网站的内容,包括您提供的链接。JinaReader 是一个文本处理工具,通常用于分析文本内容,但如果内容不是中文,JinaReader 或其他工具需要集成一个翻译服务来将文本翻译成中文。 以下是一个使用假设的 JinaReader 工具和翻译服务处理外部链接内容的步骤概述: 1. **访问链接**:使用网络爬虫技术(如 Scrapy 或 Beautiful Soup)访问您提供的链接,并抓取网页内容。 2. **内容提取**:从网页中提取出您想要分析的文本内容。 3. **检测语言**:使用语言检测API(如Google的Language Detection API)来检测提取的文本的语言。 4. **翻译**:如果检测到的语言不是中文,使用翻译API(如Google Translate API)将文本翻译成中文。 5. **分析**:使用 JinaReader 对翻译后的中文文本进行内容分析。 6. **总结**:根据分析结果生成总结。 以下是一个简化的代码示例,展示如何使用假设的函数来实现上述步骤: ```python import requests from langdetect import detect from googletrans import Translator # 假设的函数,用于访问链接并获取内容 def fetch_content(url): response = requests.get(url) return response.text # 假设的函数,用于翻译文本 def translate_text(text, dest='zh-cn'): translator = Translator() translated = translator.translate(text, dest=dest) return translated.text # 假设的函数,使用JinaReader分析文本内容 def analyze_text(text): # 这里应该调用JinaReader的API来分析文本 # 返回分析结果 return "分析结果" # 假设的函数,生成总结 def summarize_text(text): # 这里应该调用JinaReader的总结功能 # 返回总结结果 return "总结结果" # 主程序 url = "https://mindstalk.net/vinge/vinge-sing.html" content = fetch_content(url) detected_language = detect(content) if detected_language != 'zh-cn': content = translate_text(content) analysis_result = analyze_text(content) summary = summarize_text(analysis_result) print(summary)
请注意,上述代码是假设性的,它没有使用实际的 JinaReader 或翻译API。在实际应用中,您需要替换为实际的API调用和JinaReader的功能实现。
## Post by: RyanShook ### Comments: **samsartor**: > We humans have the ability to internalize the world and conduct "what if's" in our heads; we can solve many problems thousands of times faster than natural selection.<p>I don't know for sure whether superintellegence will happen, but as for the singularity, this is the underlying assumption I have the most issue with. Smart isn't the limiting factor of progress, often it's building consensus, getting funding, waiting for results, waiting for parts to ship, waiting for the right opportunity to come along. We do _experiments_ faster than natural selection, but we still have to do them in the real world. Solving problems happens on the lab bench, not just in our heads.<p>Even if exponentially more intelligent machines get built, what's to stop the next problem on the road to progress being exponentially harder? Complexity cuts both ways. > **samsartor**: >;我们人类有能力内化世界和行为";如果;s";在我们的脑海里;我们可以比自然选择快数千倍地解决许多问题<p> 我不知道;我不确定超级智能是否会发生,但对于奇点,这是我最不同意的基本假设。智能不是;t进步的限制因素,通常是;我们正在建立共识,获得资金,等待结果,等待零件发货,等待合适的机会出现。我们做实验的速度比自然选择快,但我们仍然必须在现实世界中做。解决问题发生在实验室的工作台上,而不仅仅是在我们的头脑中<p> 即使制造出指数级更智能的机器;是不是要阻止前进道路上的下一个问题变得更加困难?复杂性是双向的。 **webprofusion**: The single biggest problem we have is human hubris. We assume if we create a super intelligence (or more likely, many millions of them) that they'll perpetually have an interest in serving us. > **webprofusion**: 我们面临的最大问题是人类的傲慢。我们假设,如果我们创造了一个超级智能(或者更有可能的是,数以百万计的超级智能),它们;我将永远有兴趣为我们服务。 **WillAdams**: The thing which these discussions leave out are the physical aspects:<p>- if a computer system were able to design a better computer system, how much would it cost to then manufacture said system? How much would it cost to build the fabrication facilities necessary to create this hypothetical better computer?<p>- once this new computer is running, how much power does it require? What are the on-going costs to keep it running? What sort of financial planning and preparations are required to build the next generation device/replacement?<p>I'd be satisfied with a Large-Language-Model which:<p>- ran on local hardware<p>- didn't have a marked affect on my power bill<p>- had a fully documented provenance for _all_ of its training which didn't have copyright/licensing issues<p>- was available under a license which would allow arbitrary use without on-going additional costs/issues<p>- could actually do useful work reliably with minimal supervision > **WillAdams**: 这些讨论忽略了物理方面:<p>-如果一个计算机系统能够设计出一个更好的计算机系统,那么制造该系统的成本是多少?建造制造这种假想的更好的计算机所需的制造设施需要多少钱<p> -一旦这台新电脑开始运行,它需要多少电力?维持其运行的持续成本是多少?构建下一代设备需要什么样的财务规划和准备;替换<p> 我;d对大型语言模型感到满意,该模型:<p>在本地硬件上运行<p>,但没有;对我的电费没有明显影响<p>-所有培训都有完整的记录来源,但没有;没有版权;许可问题<p>-在允许任意使用而无需持续额外成本的许可证下可用;issues<p>-实际上可以在最少的监督下可靠地完成有用的工作 **Animats**: We still don't have squirrel-level AI. This is embarrassing.<p>Now that LLMs have been around for a while, it's fairly clear what they can and can't do. There are still some big pieces missing. Like some kind of world model. > **Animats**: 我们仍然没有;我没有松鼠级别的人工智能。这很尴尬<p> 既然LLM已经存在了一段时间;很清楚他们能做什么;不,还有一些大块的东西不见了。就像某种世界模式。 **gnabgib**: Discussion in 2023 (123 points, 169 comments) <a href="https://news.ycombinator.com/item?id=35617100">https://news.ycombinator.com/item?id=35617100</a> > **gnabgib**: 2023年的讨论(123点,169条评论)<a href=“https:/;news.ycombinator.comM;item?id=35617100”>https:"/;news.ecombinator.com;项目?id=35617100</a>