【Hacker News搬运】英飞凌的二氧化碳传感器监测室内空气质量
-
Title: Infineon's CO2 Sensor Monitors Indoor Air Quality
英飞凌的二氧化碳传感器监测室内空气质量
Text:
Url: https://www.allaboutcircuits.com/news/infineons-co2-sensor-precisely-monitors-indoor-air-quality/
很抱歉,由于我是一个文本处理的AI,我无法直接访问外部链接。但是,我可以帮助您分析并总结一篇关于Infineon公司CO2传感器的文章,如果您能提供文章的内容或摘要。 如果您需要将非中文内容翻译成中文,我也可以提供帮助。请提供文章的文本内容或摘录,我将尽力将其翻译成中文。如果您有其他问题或需要进一步的帮助,请告诉我。
Post by: WaitWaitWha
Comments:
ahaucnx: We did some extensive testing of photo-acoustic and optical NDIR CO2 sensors indoors as well as outdoors and also in comparison to scientific reference instruments.<p>I just updated the blog post that I wrote last year [1] with the specs of this new Infineon sensor and also our experiences with doing CO2 measurement outdoors.<p>In summary we can say that under normal indoor conditions (e.g. small range of temperature, relative high range of CO2 etc.), the photo-acoustic NDIR sensors perform well.<p>However, outdoors they significantly underperform optical NDIR sensors to the extent that they are barely usable. See for example this chart [2].<p>It's hard to say why exactly they perform so poorly outdoors but I believe that they rely on quite complex internal algorithms that probably have been only developed with typical indoor conditions in mind and as soon as some parameters like temperature are out of the typical range, they significantly drop in their performance.<p>Furthermore, we also detected that they are sensitive to interference from low frequency noise which could for example come from ventilation systems, refrigerators etc. This is not surprising as they rely on their internal microphone to do the photo-acoustic measurements.<p>All of this and the rock-solid performance we see with optical NDIR sensors made us quite wary about the photo-acoustic sensors and not use them in our open-source hardware monitors. As I said, I believe they work quite well in general but because we saw also some really strange and unexpected behavior of these photo-acoustic sensors, I'd now always prefer optical NDIR sensors if possible.<p>[1] <a href="https://www.airgradient.com/blog/co2-sensors-photo-acoustic-vs-ndir-updated/" rel="nofollow">https://www.airgradient.com/blog/co2-sensors-photo-acoustic-...</a><p>[2] <a href="https://www.airgradient.com/blog/co2-sensors-photo-acoustic-vs-ndir-updated/#outdoors" rel="nofollow">https://www.airgradient.com/blog/co2-sensors-photo-acoustic-...</a>
ahaucnx: 我们在室内和室外对光声和光学NDIR CO2传感器进行了广泛的测试,并与科学参考仪器进行了比较<p> 我刚刚更新了我去年写的博客文章[1],介绍了这种新型英飞凌传感器的规格,以及我们在户外进行二氧化碳测量的经验<p> 总之,我们可以说,在正常的室内条件下(例如温度范围小、二氧化碳含量相对较高等),光声NDIR传感器表现良好<p> 然而,在户外,它们的性能明显不如光学NDIR传感器,几乎无法使用。例如,请参见此图表[2]<p> 它;很难说为什么它们在户外的表现如此糟糕,但我相信它们依赖于相当复杂的内部算法,这些算法可能只是在考虑了典型的室内条件下开发的,一旦温度等参数超出典型范围,它们的性能就会显著下降<p> 此外,我们还检测到它们对低频噪声的干扰很敏感,这些噪声可能来自通风系统、冰箱等。这并不奇怪,因为它们依靠内部麦克风进行光声测量<p> 所有这些以及我们在光学NDIR传感器上看到的坚如磐石的性能使我们对光声传感器非常警惕,并且不在我们的开源硬件监视器中使用它们。正如我所说的,我相信它们总体上工作得很好,但因为我们也看到了这些光声传感器的一些非常奇怪和意想不到的行为,我;d如果可能的话,现在总是更喜欢光学NDIR传感器<p> [1]<a href=“https:”www.airgraduation.com:”blog:”二氧化碳传感器光声与ndir更新“rel=”nofollow“>https:”/;www.airgradient.com;博客/;二氧化碳传感器光声传感器</a> <p>[2]<a href=“https:/;www.airgraduation.com/ blog/-二氧化碳传感器光声对比ndir更新&#outdoors”rel=“nofollow”>https:/;www.airgradient.com;博客/;二氧化碳传感器光声传感器</一
babl-yc: Seems similar to the SCD40 photoacoustic approach.<p>I used that for an open-source CO2 monitor I designed:<p><a href="https://bitclock.io/" rel="nofollow">https://bitclock.io/</a><p><a href="https://github.com/goat-hill/bitclock">https://github.com/goat-hill/bitclock</a>
babl-yc: 看起来类似于SCD40光声方法<p> 我将其用于我设计的开源二氧化碳监测仪:<p><a href=“https:/;bitlock.ioO;”rel=“nofollow”>https:/;bitlock.io</a> <p><a href=“https:/;github.comG;山羊山+;bitlock”>https:"/;github.com;山羊山;比特锁</a>
OldGuyInTheClub: Nice to see this miniaturization of photoacoustic spectroscopy - something I've done a bit of in the past. It is an underappreciated technique. Ordinarily one measures the difference in optical throughput with and without a sample. If it is a weak absorber, it is a difference between two large numbers. PAS is zero background. No absorption, no pressure wave, no signal. Any absorption stands out clearly against that zero background.
OldGuyInTheClub: 很高兴看到光声光谱的小型化——这是我所做的事情;我过去做过一点。这是一种被低估的技术。通常,人们测量有样品和没有样品的光吞吐量的差异。如果它是一个弱吸收体,那么它就是两个大数之间的差。PAS是零背景。没有吸收,没有压力波,没有信号。在零背景下,任何吸收都很明显。
koolba: > With this architecture, the sensor achieves a high level of precision, offering an accuracy of ±50 ppm ±5% between 400 ppm and 3,000 ppm. The overall range of the sensor is from 0 to 32,000 ppm.<p>What does the back to back ± mean? Is that the variance of accuracy from device to device? Or does the 5% reference the specific range of 400-3000?
koolba: >;通过这种架构,传感器实现了高精度,在400ppm和3000ppm之间提供了±50ppm±5%的精度。传感器的总范围为0至32000 ppm<p> 背靠背是什么意思?这是不同设备的精度差异吗?或者5%是指400-3000的具体范围吗?
vardump: Finally an actually working (cheap?) CO2 sensor?<p>So many of those actually measure humidity, temp and VOCs and try to derive some sort of CO2 reading out of those.
vardump: 最后,一个真正有效的(廉价的)二氧化碳传感器<p> 其中许多实际上测量了湿度、温度和挥发性有机化合物,并试图从中得出某种二氧化碳读数。