【Hacker News搬运】鄂尔多斯问题汇编
-
Title: Erdos Problems Collection
鄂尔多斯问题汇编
Text:
Url: https://www.erdosproblems.com/
Erős问题网站是一个关于数学问题的地方,这些问题是数学家Paul Erős在他的一生中选择的。网站上有589个问题,其中159个已经被解决。Erős认为,一个好的问题可以揭示一个特定领域的核心困难,成为衡量该领域进展的基准。这些问题可能像“棉花糖”,提供短暂的享受,也可能像“橡子”,需要深刻的和新颖的洞察力,从而产生更普遍的结果和新的问题。Erős在1997年的著作《我的一些最喜欢的问题和结果》中提到了这些问题的多样性,他不能保证所有问题都是“橡子”,但因为这些问题已经阻碍了最好的数学家几十年的努力,并且经常为解决这些问题提供现金奖励,这可能表明需要新的想法,这些想法可以反过来导致更一般的结果,自然而然地,也会产生新的问题。这样,数学生命的循环永远继续。
Post by: dargscisyhp
Comments:
skinner_: The question of what is an Erdős problem and what is not is not black and white. My team has managed to solve a problem that's sort of an Erdős problem. In the early sixties, Leo Moser asked about the value of some quantity. In a 1985 paper, Erdős commented that the quantity “seems likely” to be less than 1/4. It was known to be at most 2/7. After a long line of improvements by several teams, we were the first ones to go below 1/4.<p>For those who are interested, <a href="https://www.sfu.ca/~vjungic/RamseyProjects/section-11.html" rel="nofollow">https://www.sfu.ca/~vjungic/RamseyProjects/section-11.html</a> describes the question. Our answer is at <a href="https://arxiv.org/abs/2207.14179" rel="nofollow">https://arxiv.org/abs/2207.14179</a>, and a popsci account of our result is at <a href="https://www.quantamagazine.org/mathematicians-break-bounds-in-coloring-problem-20230719/" rel="nofollow">https://www.quantamagazine.org/mathematicians-break-bounds-i...</a> .
skinner_: 什么是埃尔德问题,什么不是埃尔德问题的问题不是非黑即白的。我的团队已经设法解决了一个问题;这有点像埃尔德的问题。在60年代初,Leo Moser询问了一些数量的价值。在1985年的一篇论文中,埃尔德斯评论说,这个数量“似乎很可能”小于1/F;4.已知其至多为2/F;7.经过几个团队的一长串改进,我们是第一个低于1/F的团队;4.<p>对于感兴趣的人,<a href=“https://;/;www.sfu.ca/!~vjungic/:Ramsey Projects/§ion-11.html”rel=“nofollow”>https:///;www.sfu.ca/~vjungic;拉姆齐项目;第11.html</a>节描述了这个问题。我们的答案在<a href=“https://;/;arxiv.org/#xx2F;abs/!2207.14179”rel=“nofollow”>https://上/;arxiv.org/x2F;abs;2207.14179</a>,我们的结果的popsci说明位于<a href=“https://;/;www.quantamagazine.org/x2F;mathematicians-break-bounds-in-coloring-problem-20230719/”rel=“nofollow”>https:///;www.quantamagazine.org/x2F;数学家们-健全人-我…</a>。
readyplayernull: > Ron Graham bet him $500 that he could not stop taking the drug for a month. Erdős won the bet, but complained that during his abstinence mathematics had been set back by a month: 'Before, when I looked at a piece of blank paper my mind was filled with ideas. Now all I see is a blank piece of paper.' After he won the bet, he promptly resumed his amphetamine use.<p><a href="http://en.wikipedia.org/wiki/Paul_Erdős" rel="nofollow">http://en.wikipedia.org/wiki/Paul_Erdős</a>
readyplayernull: >;罗恩·格雷厄姆和他打赌500美元,说他一个月都不能停止服药。埃尔德斯赢得了赌注,但抱怨在禁欲期间,数学被推迟了一个月:;以前,当我看着一张白纸时,我的脑海里充满了想法。现在我看到的只是一张空白的纸';在他赢得赌注后,他立即恢复使用苯丙胺<p> <a href=“http://x2F;/;en.wikipedia.org/!wiki/:Paul_Erd%C5%91s”rel=“nofollow”>http://x2F/;en.wikipedia.org/;wiki/;Paul_Erd%C5%91s</a>
pnielsen2: One of my friends from undergrad solved an erdos problem a couple years ago during the first year of his PhD... Absolutely insane.
pnielsen2: 几年前,我的一个本科生朋友在读博士的第一年解决了一个erdos问题。。。简直疯了。
johnthescott: if you like the "book", you may like the scottish book.<p><pre><code> https://en.wikipedia.org/wiki/Scottish_Book
</code></pre>
eastern european mathematics ...johnthescott: 如果你喜欢“;书”;,你可能喜欢这本苏格兰书<p> <pre><code>https://;en.wikipedia.org/;wiki/;苏格兰图书</code></pre>东欧数学。。。