【Hacker News搬运】SpawELO–局域网派对的小型免费配对系统
-
Title: SpawELO – small free matchmaking system for LAN parties
SpawELO–局域网派对的小型免费配对系统
Text:
Url: https://blog.spawek.com/SpawELO
很抱歉,我无法直接访问互联网或特定网站来抓取内容。不过,如果你能提供该博客文章的文本内容,我可以使用JinaReader(一个文本处理工具)的概念来模拟如何分析和总结这篇文章。 以下是一个简化的步骤,展示如何使用伪代码来模拟这个过程: ```python # 假设这是从提供的URL中抓取的文本内容 text_content = """ [文章标题] [文章内容] ... [文章内容] ... """ # 导入必要的库 from jina import Document from jina.schema import DocumentSchema # 定义文档的schema schema = DocumentSchema( fields=[ "text", "summary", # 其他可能需要的字段 ] ) # 创建一个JinaReader的实例 reader = JinaReader(schema=schema) # 处理文本内容 documents = reader.process_documents(text_content) # 输出总结 for doc in documents: print(doc.summary)
请注意,
JinaReader
是一个虚构的类,我在这里只是用它来表示一个文本处理和总结的过程。在实际情况中,你可能需要使用自然语言处理(NLP)库如NLTK、spaCy或者更高级的工具如BERT来提取摘要。以下是一个简单的摘要生成示例,使用Python的
nltk
库:import nltk from nltk.tokenize import word_tokenize, sent_tokenize from nltk.corpus import stopwords from nltk.probability import FreqDist # 假设这是从提供的URL中抓取的文本内容 text_content = """ [文章内容] ... """ # 分词 words = word_tokenize(text_content) # 去除停用词 stop_words = set(stopwords.words('english')) filtered_words = [w for w in words if not w.lower() in stop_words] # 计算词频 freq_dist = FreqDist(filtered_words) # 选择最常见的词作为摘要的候选 common_words = freq_dist.most_common(5) # 生成摘要(这里非常简单,仅作为示例) summary = " ".join([word for word, freq in common_words]) print(summary)
请注意,上述代码仅用于演示目的,实际摘要生成会更加复杂,可能涉及更高级的NLP技术和模型。如果你提供文章内容,我可以尝试一个更实际的摘要生成示例。
## Post by: Spawek ### Comments: **digitalPhonix**: Has anyone tried something that isn’t based on ELO/trueskill for team-based games?<p>It feels to me like summing/averaging the ELO of a team to do matchmaking is:<p>a) just a hack to fit a square peg (team based matchmaking) into a round hole (individual matchmaking)<p>b) losing a lot of information about how intra-team dynamics would affect the result (as in player A and B play well together, better than their individual ELOs summed; but A and C play poorly together, worse than their individual ELOs summed) > **digitalPhonix**: 是否有人尝试过不基于ELO的东西;团队游戏的真正技能<p> 在我看来,这就像是在总结;对一个团队进行配对的ELO进行平均是:<p>a)只需将一个方形钉子(基于团队的配对)插入一个圆孔(个人配对)<p>b)丢失了大量关于团队内部动态如何影响结果的信息(例如,玩家a和b在一起打得很好,比他们的个人ELO总和好;但a和C在一起打的很差,比他们个人ELO的总和差) **palata**: For tournaments, I like the Swiss system [1], which I believe is popular in chess.<p>[1]: <a href="https://en.wikipedia.org/wiki/Swiss-system_tournament" rel="nofollow">https://en.wikipedia.org/wiki/Swiss-system_tournament</a> > **palata**: 对于锦标赛,我喜欢瑞士体系[1],我认为这在国际象棋中很受欢迎<p> [1]:<a href=“https:”en.wikipedia.org“wiki:”Swiss-system_tournament“rel=”nofollow“>https:”/;en.wikipedia.org;维基;瑞士系统_旅游</a> **haliliceylan**: Wow its very interesting, for me AI is still a big black box > **haliliceylan**: 哇,这很有趣,对我来说,人工智能仍然是一个大黑匣子 ****: > ****: **joaquincabezas**: what about trying with Shapley values? > **joaquincabezas**: 尝试沙普利价值观怎么样?