【Hacker News搬运】FrontierMath:评估人工智能中高级数学推理的基准
-
Title: FrontierMath: A benchmark for evaluating advanced mathematical reasoning in AI
FrontierMath:评估人工智能中高级数学推理的基准
Text:
Url: https://epochai.org/frontiermath/the-benchmark
很抱歉,由于我是一个文本处理的AI,我无法直接访问外部链接或使用特定的软件如JinaReader来抓取和分析网页内容。不过,我可以提供一些指导,如果你想要使用JinaReader这样的工具来抓取和分析网页内容,并对其进行翻译和总结,以下是一个大致的步骤: 1. **安装和设置JinaReader**: - 确保你的系统上安装了JinaReader。 - 配置JinaReader,设置适当的抓取规则,比如指定要抓取的URL。 2. **抓取内容**: - 使用JinaReader访问指定的URL(https://epochai.org/frontiermath/the-benchmark)。 - 运行抓取任务,JinaReader将会下载网页内容。 3. **内容分析**: - 分析抓取到的内容,这可能包括提取文本、图片、链接等。 - 如果需要,可以使用JinaReader的文本分析功能来提取关键信息,比如摘要、关键词等。 4. **翻译非中文内容**: - 如果抓取到的内容包含非中文内容,可以使用JinaReader集成的翻译功能或外部API(如Google Translate API)来将非中文内容翻译成中文。 5. **总结内容**: - 使用JinaReader的总结功能或者手动编写一个摘要,将抓取和翻译后的内容总结成简短的段落。 以下是一个假设性的示例,如果你使用上述步骤处理了网页内容:
抓取到的网页标题是 "The Benchmark",内容主要讨论了在FrontierMath中使用的基准测试。
通过翻译,我们发现该基准测试旨在评估和比较不同机器学习模型在数学问题解决上的性能。
总结:本文介绍了FrontierMath中使用的基准测试,用于评估数学问题解决模型的性能。
请记住,这只是一个示例,实际的内容和总结将取决于网页的具体内容。如果你需要实际操作这些步骤,你可能需要查阅JinaReader的官方文档来获取具体的操作指南。
Post by: sshroot
Comments:
agucova: For some context on why this is important: this benchmark was designed to be extremely challenging for LLMs, with problems requiring several hours or days of work by expert mathematicians. Currently, LLMs solve 2% of problems in the set (which is kept private to prevent contamination).<p>They even provide a quote from Terence Tao, which helped create the benchmark (alongside other Field medalists and IMO question writers):<p>> “These are extremely challenging. I think that in the near term basically the only way to solve them, short of having a real domain expert in the area, is by a combination of a semi-expert like a graduate student in a related field, maybe paired with some combination of a modern AI and lots of other algebra packages…”<p>Surprisingly, prediction markets [1] are putting 62% on AI achieving > 85% performance on the benchmark before 2028.<p>[1]: <a href="https://manifold.markets/MatthewBarnett/will-an-ai-achieve-85-performance-o?play=true" rel="nofollow">https://manifold.markets/MatthewBarnett/will-an-ai-achieve-8...</a>
agucova: 关于为什么这很重要的一些背景:这个基准的设计对LLM来说极具挑战性,问题需要专家数学家花费几个小时或几天的时间。目前,LLM解决了该组中2%的问题(该组被保密以防止污染)<p> 他们甚至引用了特伦斯·陶的话,这有助于创建基准(与其他田径奖牌获得者和国际海事组织问题撰写者一起):<p>>;“这些都极具挑战性。我认为,在短期内,除了在该领域拥有真正的领域专家外,解决这些问题的唯一方法基本上是将相关领域的研究生等半专家结合起来,也许再加上现代人工智能和许多其他代数包的某种组合…”<p>令人惊讶的是,预测市场[1]将62%的注意力放在人工智能的实现上>;2028年之前,基准测试的性能为85%。<p>[1]:<a href=“https:#x2F;#x2F多市场#x2F MatthewBarnett#x2F将实现-85的性能?play=true”rel=“nofollow”>https:/;多个市场;MatthewBarnett;将实现8</a>
bravura: Regarding keeping the test set private to avoid contamination, the comments about leakage are spot on. The real test set should always be <i>the future</i>.<p>We should evaluate LLMs on text from beyond their knowledge cutoff date, by computing their per-byte perplexity or per-byte compression ratio. There's a deep theoretical connection between compression and learning.<p>The intuition here is that being able to predict the future of science (or any topic, really) is indicative of true understanding. Slightly more formally: When ICLR 2025 announces and publishes the accepted papers, Yoshua Bengio is less surprised/perplexed by what's new than a fresh PhD student. And Terence Tao is less surprised/perplexed by what will be proven in math in the next 10 years than a graduate student in a related field.<p>This work has it right: <a href="https://ar5iv.labs.arxiv.org/html//2402.00861" rel="nofollow">https://ar5iv.labs.arxiv.org/html//2402.00861</a>
bravura: 关于保持测试集的私密性以避免污染,关于泄漏的评论是准确的。真正的测试集应该始终是未来的<i></i><p> 我们应该通过计算LLM的每字节困惑度或每字节压缩比,从超出其知识截止日期开始评估LLM的文本。那里;压缩和学习之间有着深厚的理论联系<p> 这里的直觉是,能够预测科学的未来(或任何主题,真的)表明了真正的理解。稍微正式一点:当ICLR 2025宣布并发表被接受的论文时,Yoshua Bengio并不那么惊讶;困惑于什么;这比刚读博士生还新鲜。陶则没那么惊讶;与相关领域的研究生相比,他对未来10年数学将证明什么感到困惑<p> 这项工作是正确的:<a href=“https:/;ar5iv.labs.arxiv.org ,html .00861”rel=“nofollow”>https:/;ar5iv.labs.arxiv.org;html//;2402.00861</a>
****:
****:
benchmarkist: Very cool. It'll be nice to have a benchmark that can be used to validate abstract reasoning capabilities because the hype is really starting to get out of hand.
benchmarkist: 很酷。它;如果有一个基准测试可以用来验证抽象推理能力,那就太好了,因为炒作真的开始失控了。
westurner: ScholarlyArticle: "FrontierMath: A Benchmark for Evaluating Advanced Mathematical Reasoning in AI" (2024) <a href="https://arxiv.org/abs/2411.04872" rel="nofollow">https://arxiv.org/abs/2411.04872</a> ..
<a href="https://epochai.org/frontiermath/the-benchmark" rel="nofollow">https://epochai.org/frontiermath/the-benchmark</a> :<p>> [Not even 2%]<p>> Abstract: <i>We introduce FrontierMath, a benchmark of hundreds of original, exceptionally challenging mathematics problems crafted and vetted by expert mathematicians. The questions cover most major branches of modern mathematics -- from computationally intensive problems in number theory and real analysis to abstract questions in algebraic geometry and category theory. Solving a typical problem requires multiple hours of effort from a researcher in the relevant branch of mathematics, and for the upper end questions, multiple days. FrontierMath uses new, unpublished problems and automated verification to reliably evaluate models while minimizing risk of data contamination. Current state-of-the-art AI models solve under 2% of problems, revealing a vast gap between AI capabilities and the prowess of the mathematical community. As AI systems advance toward expert-level mathematical abilities, FrontierMath offers a rigorous testbed that quantifies their progress.</i>westurner: 学术文章:";FrontierMath:评估人工智能高级数学推理的基准";(2024)<a href=“https:”arxiv.org“abs:”2411.04872“rel=”nofollow“>https:”/;arxiv.org;abs;2411.04872</a>。。<a href=“https:/;epochai.orgH;frontiermathM;基准测试”rel=“nofollow”>https:/;epochai.org;前沿数学;基准</a>:<p>>;[甚至不到2%]<p>>;摘要:<i>我们介绍FrontierMath,这是一个由专家数学家精心设计和审查的数百个原创、极具挑战性的数学问题的基准。这些问题涵盖了现代数学的大多数主要分支——从数论和实分析中的计算密集型问题到代数几何和范畴论中的抽象问题。解决一个典型的问题需要相关数学分支的研究人员花费数小时的努力,而对于高端问题,则需要数天的时间。FrontierMath使用新的、未发表的问题和自动验证来可靠地评估模型,同时最大限度地降低数据污染的风险。目前最先进的人工智能模型解决了不到2%的问题,揭示了人工智能能力与数学界实力之间的巨大差距。随着人工智能系统向专家级数学能力迈进,FrontierMath提供了一个严格的测试平台来量化它们的进展</i>