【Hacker News搬运】Llm.c–在简单、纯c/CUDA中进行Llm培训
-
Title: Llm.c – LLM training in simple, pure C/CUDA
Llm.c–在简单、纯c/CUDA中进行Llm培训
Text:
Url: https://github.com/karpathy/llm.c
很抱歉,尝试使用 webscraper 工具抓取指定 URL 时遇到了连接超时的问题。由于我无法直接访问互联网,因此无法提供实时的网页内容分析。如果您能提供网页内容的文本或摘要,我可以帮助您进行分析和总结。如果您需要针对特定内容的帮助,请提供相关信息。
Post by: tosh
Comments:
patrick-fitz: <a href="https://twitter.com/karpathy/status/1777427944971083809" rel="nofollow">https://twitter.com/karpathy/status/1777427944971083809</a><p>> And once this is a in a bit more stable state: videos on building this in more detail and from scratch.<p>Looking forward to watching the videos.
patrick-fitz: <a href=“https:#x2F;/;twitter.com/!karpathy/,status/:1777427944971083809”rel=“nofollow”>https:///;twitter;karpathy;status;1777427944971083809</a><p>>;一旦这是一个更稳定的状态:关于从头开始更详细地构建它的视频<p> 期待观看视频。
convexstrictly: Candle is a minimalist ML framework for Rust with a focus on performance (including GPU support) and ease of use<p><a href="https://github.com/huggingface/candle">https://github.com/huggingface/candle</a>
convexstrictly: Candle是Rust的一个极简ML框架,专注于性能(包括GPU支持)和易用性<p><a href=“https://;/;github.com/!huggingface/”>https:///;github.com/;拥抱脸;蜡烛</a>
yinser: I've seen his nano GPT implemented using JAX, now we have C/CUDA. I'd love to see if nano GPT could be doable in Mojo. I took a stab at a Mojo conversion of his Wavenet project (Andrej's zero to hero course) and I gotta say... python has so many nice features lol. Stating the obvious I know but what you see done in 6 lines of python takes so much more work in other languages.
yinser: I-;我们已经看到使用JAX实现了他的纳米GPT,现在我们有了;库达。I-;我很想看看纳米GPT在Mojo中是否可行。我尝试了一下Mojo对他的Wavenet项目的转换(Andrej的零到英雄课程),我不得不说。。。python有很多不错的功能,哈哈。我知道这一点很明显,但你在python的6行中看到的内容在其他语言中需要做更多的工作。
qwertox: > direct CUDA implementation, which will be significantly faster and probably come close to PyTorch.<p>It almost hurts, to read that PyTorch is faster.<p>But then again, with these GPU-RAM-prices, let's see how it speeds up the CPU.<p>We really need SO-DIMM slots on the RTX series (or AMD/Intel equivalent) so that we can expand the RAM as we need it to. Is there a technical problem to it?
qwertox: >;直接实现CUDA,这将明显更快,并且可能接近PyTorch<p> 读到PyTorch更快,几乎让人心痛<p> 但话说回来,对于这些GPU RAM价格;让我们看看它是如何提高CPU速度的<p> 我们真的需要RTX系列上的SO-DIMM插槽(或AMD x2F Intel等效产品),这样我们就可以根据需要扩展RAM。它有技术问题吗?
flockonus: Question, apologize if slightly off-topic, it's something I'd like to use this project for: Is there an example of how to train GPT-2 on time series, in particular with covariates?<p>As my understanding of LLM goes at a basic level it's predicting the next token from previous tokens, which sounds directionally similar to time series (perhaps letting aside periodicity).
flockonus: 问题,如果有点跑题,请道歉;这是我喜欢的东西;我想把这个项目用于:有没有关于如何在时间序列上训练GPT-2的例子,特别是使用协变量<p> 由于我对LLM的理解处于基本水平;s从以前的令牌中预测下一个令牌,这在方向上听起来类似于时间序列(也许不考虑周期性)。