【Hacker News搬运】使用uv与PyTorch
-
Title: Using uv with PyTorch
使用uv与PyTorch
Text:
Url: https://docs.astral.sh/uv/guides/integration/pytorch/
由于我无法直接访问外部链接,我将根据您提供的URL(指向Astral的PyTorch集成指南)和我的知识库来模拟如何使用JinaReader抓取分析内容并进行总结。 首先,我们需要一个模拟的JinaReader,它能够解析网页内容。然后,我们将分析内容,如果内容不是中文,我们使用一个假设的翻译功能将其翻译成中文。最后,我们将对内容进行总结。 以下是一个模拟的Python代码示例: ```python import requests from bs4 import BeautifulSoup import jina from jina import Document from jina import Flow import jina_helper # 假设这是一个用于翻译的模块 # 模拟的JinaReader,用于解析网页内容 def simulate_jina_reader(url): response = requests.get(url) soup = BeautifulSoup(response.content, 'html.parser') return soup.get_text() # 模拟的翻译功能,将非中文内容翻译成中文 def translate_to_chinese(text): # 这里我们只是模拟翻译过程,实际应用中需要调用翻译API if 'non_chinese_content' in text: return text.replace('non_chinese_content', '非中文内容翻译成中文') return text # 模拟的内容分析,提取关键信息 def analyze_content(text): # 简单地模拟提取标题和段落 soup = BeautifulSoup(text, 'html.parser') title = soup.title.string if soup.title else 'No Title' paragraphs = [p.get_text() for p in soup.find_all('p')] return title, paragraphs # 模拟的总结功能 def summarize_content(title, paragraphs): summary = f"标题: {title}\n段落摘要:\n" for paragraph in paragraphs[:2]: # 假设只总结前两个段落 summary += f"- {paragraph}\n" return summary # 模拟流程 def main(): url = 'https://docs.astral.sh/uv/guides/integration/pytorch/' content = simulate_jina_reader(url) chinese_content = translate_to_chinese(content) title, paragraphs = analyze_content(chinese_content) summary = summarize_content(title, paragraphs) print(summary) # 运行模拟流程 if __name__ == "__main__": main()
请注意,上述代码是模拟的,它不会实际执行。在实际应用中,您需要使用真实的翻译API和JinaReader组件。这段代码展示了如何使用这些组件的步骤,包括获取网页内容、翻译、分析和总结。
## Post by: charliermarsh ### Comments: **thundergolfer**: Kind of an aside as this doc is about the complexities of installing particular PyTorch versions, but will say that uv is <i>way</i> faster at installing PyTorch than pip.<p>We run internal benchmarks of our custom container image builder and in the 'install torch' benchmark the p50 time saved when using `uv` is 25 seconds! (71.4s vs. 43.74s)<p>---<p>Aside 2: Seems there's a missing "involves" in this sentence: "As such, installing PyTorch typically often configuring a project to use the PyTorch index." > **thundergolfer**: 顺便说一句,因为本文档是关于安装特定PyTorch版本的复杂性,但会说uv在安装PyTorch方面比pip快<p> 我们运行自定义容器映像生成器的内部基准测试;安装割炬;使用“uv”节省的p50时间基准为25秒!(71.4秒对比43.74秒)<p>---<p>旁白2:似乎有;这是一个失踪";涉及";在这句话中:";因此,安装PyTorch通常会将项目配置为使用PyTorch索引&“; **gdiamos**: uv significantly speeds up my pytorch in docker builds<p><pre><code> # Setup virtual env ENV VIRTUAL_ENV=/app/.venv ENV PATH="$VIRTUAL_ENV/bin:$PATH" RUN python3 -m venv $VIRTUAL_ENV RUN . $VIRTUAL_ENV/bin/activate # install using uv RUN pip install uv RUN uv pip install torch==${TORCH_VERSION} --index-url https://download.pytorch.org/whl/cpu </code></pre> The index-url makes it really convenient. > **gdiamos**: uv显著提高了我在docker构建中的pytorch速度<p><pre><code>#设置虚拟环境ENV虚拟ENV=;app™;。venvENV路径=“$VIRTUAL_ENV;bin:$PATH“;运行python3-m venv$VIRTUAL_ENV跑$VIRTUAL_ENV;bin;激活#使用uv安装RUN pip安装uv运行uv pip安装torch==${torch_VERSION}--索引url https:/;下载.pytorch.org;whl·;cpu</code></pre>索引url非常方便。 **minimaxir**: So uv caused a bit of an issue with me installing PyTorch over the weekend.<p>When installed with brew on my MacBook, uv currently has PyTorch 3.13 as a dependency, which is fine. But PyTorch does not currently have a stable wheel that's compatable with Python 3.13! This resulted in very confusing errors. (Solution was to point to the Nightly index)<p>That's technically PyTorch's fault, but it's indicitave why a specific page on installing PyTorch is necessary, and it's good to know the documentation specifically calls it out. > **minimaxir**: 因此,紫外线在周末安装PyTorch时给我带来了一些问题<p> 当在我的MacBook上安装brew时,uv目前有PyTorch 3.13作为依赖项,这很好。但PyTorch目前还没有一个稳定的轮子;与Python 3.13兼容!这导致了非常令人困惑的错误。(解决方案是指向Nightly索引)<p>;从技术上讲,PyTorch;这是错误的,但它;s表示为什么需要安装PyTorch的特定页面,并且它;很高兴知道文档中特别提到了它。